

UC Berkeley

Active Vision Might Be All You Need

Exploring Active Vision in Bimanual Robotic Manipulation

Ian Chuang*1,2, Andrew Lee*2, Dechen Gao2, M-Mahdi Naddaf-Sh2, Iman Soltani2 ¹University of California Berkeley, ²University of California Davis *Equal Contribution

We developed AV-ALOHA to find out!

Immersive first-person control (real & sim) Human operators (Andrew & Ian)

AV-ALOHA real-world setup

AV-ALOHA

- A bimanual robot system with 7-DoF active vision (AV) and first-person VR control
- Real & Sim platforms to explore learning human-guided active vision
- Open-source code, hardware, simulation environment, and datasets

WHY? Fixed-view cameras struggle with occlusions and limited visibility HOW? Humans naturally move their heads and body to gain better perspectives

• AV-ALOHA can replicate this behavior — actively control its viewpoint during demonstration and learning

AV-ALOHA simulation environment

Imitation Learning Pipeline

Results

- We evaluate ACT success across seven tasks from two groups under different camera configurations
- Camera setups that include the AV camera outperform all others on every Group 2 task
- The **AV camera alone** achieves the highest success on two Group 2 tasks

Group 1: Tasks with minimal occlusion or viewpoint sensitivity

Group 2: Tasks designed to challenge perception under occlusion, limited viewpoint, or fine precision

* Active vision enables perception strategies that adapt to shifting visual demands throughout the task

Detailed analysis of the results are in our paper

